251 Annual Software Engineering Workshop November 29-30, 2000

Using Models to Test
Process Assumptions
within the SEL Recommended Software
Development Approach

Paolo Donzelli - Giuseppe lazeolla

Laboratory for Computer Science
and CERTIA Research Center

University of Rome “Tor Vergata”
Roma, Italy

University of Roma “ Tor Vergata’ (donzelli,iazeolla) @info.uniroma2.it

Outline

 Introduction

 Why process modelling, why a hybrid
approach, and the suggested approach

 Building a Process Model

A model of the SEL recommended software
development approach

 Applying the Model

e To reproduce some possible software
development scenarios

Why Process Modelling

Key objectives of software companies:

high quality products
high performance processes

SUpPOrts

Dynamic Estimation

Capabilit
Process C:::::i;7 pability
Model

provides
assess and analyse

what-if and off-line analysis

forecast and prototype

Why a Hybrid Approach

The software process is composed by various activities:

some are sequential, others may be performed
concurrently

activities exchange artifacts
activities consume resources and may collide

To model a software process we have to deal with both
discrete system aspects (start/end of an activity,
reception/release of an artifact) and continuous system

aspects (resource consumption, percentage of developed
product).

A Hybrid Two-level Modelling Approach

o dynamics estimation

capability
higher
apstraction discrete method
level
lower
abstraction
level

Process Model 5

Process Activities

Modelling the SEL Software Process

requirements
requirements changes
requirements increments

specification defects reports

AT ATHVANETA S A
Specification (SP)
Activity
specification [—— high level design defects reports 4 d
SP changes ~ e
SP increments High Level Design (HLD) £
SP corrections reports Activity = e
high level design —— 2
low level design defects reports
HLD changes L+ 14 1 ;
HLD increments Low Level Design (LLD)
HLD corrections reports Activity
r
e
. -4—— code defects reports p
low level design A A
LLD changes . 9
L Implementgt_lon (IMP) r
LLD corrections reports Activity t
s
code
code changes
code increments System T?St (ST)
code corrections reports Activity
system-tested code
system-tested code changes Acceptance Test)
system-tested code increments AT) Activit
system-tested code corrections reports (AT) Activity

acceptance-tested code
acceptance-tested code changes

acceptance-tested code increments
(the final SW_product)

I SPl HLDI LLDI IMPI STI AT ! time

v

Process Phases over Time

The Higher Abstraction Level

Modelling the
process structure

LLD d

ports (due to previous activities)
efects reports (due to locally injected defects)
—>
_
high-level design
start station work station review station release station

LLLLLLLLLL
LLD increments

rrrrrrrrrrrrrrrrrrrrr

LLLLLLLLLL
nnnnnnnnnnnnn

ooooooooooooooooooooo

nnnnnnnnnn O/
| rework station

external
O

internal rework station

\\\\\\\\\\\\\\\
LLLLLLLLLL
LLLLLLLLLLLLL
eeeeeeeeeeeeee

The processis modelled by a discrete-event queue net:
eactivities are networ ked sets of service stations

esartifacts are circulating customers

Higher Abstraction Level

LLD defects reports (due to previous activities)

A

LLD defects reports (due to locally injected defects)

E——
high-level design

= TR
_J

HLD changes
HLD increments
HLD corrections reports

start station work station

external rework station

v

review station

low-level design

release station

2
N/

internal rework station

Low-level Design (LLD) Activity

store station

LLD changes
LLD increments
LLD corrections reports

low-level design
LLD changes
LLD increments
(to be corrected)

low-level design
LLD changes
LLD increments
(to be released)

Higher Abstraction Level of the Process

aaaaaaaaaa

aaaaaaaaaa
nnnnnnnnnn

The Lower Abstraction Level

Modelling the

activities behaviours ﬁ —

=N

Each activity (service station) is modelled by:
«an analytical average-type function,
*Or a continuos type time-varying function,

*Or a combination ther eof.

10

Lower Abstraction Level of the “Work Station”

LLD _size= Random(a;H LD_sizebl +q)

staff E(t)

b,
T = aZLLD_S|ze +Cy

1 b3
m. 03w W =agllLD _size™™ +cq

WL

t 2

L Vel
T time > E(t) B W T2 e

high-level design

size: HLD_size
effort: W,
defectiveness: [Dg,, D, 5, 0,0, 0]

work station

low-level design

size: LLD_size
—»| effort: W, , + 0,39W

defectiveness: [Dg,, D, ,ID, 0, 0]

11

Applying the Model

Two possible software development scenarios are
simulated:

e with stable set of requirements (1500 FPs)
e with a certain amount of requirements instability

The main process attributes are effort (W), delivery
time (T), productivity (P), rework percentage (RWK),
and product defect density (DFD).

12

Stable

Stable Requirements — Comparison with SEL

Attribute

Model Conf. 95% SEL
Final Size 116 KLOC +/- 20 116
Effort 500 PW +/- 60 600
Delivery 78 W +/- 3 63
Productivity 5.8 +/- 1.8 5.3
LOC/p-hour
Rework % 17 % +/- 3% /
Defect Density 0.9 +/- 0.3 /
Defects/KLOC
Average Staff 6.5P +/-1 9.5

14

staft

Stable Requirements — Comparison with SEL

DRI LR ERT L*’T?‘ .LEE iiiii

project

activity
staff profile

staff profile

15

Effects of Instablility on the Staffing Profile

REQMTS

ANALYEIS
6

15
12 4
£ 9 -
L [—stable
E 6 - = unstable
"
3_
0
0N OO M NN d W0 D mMm N~
— N < IO N~ 00 O 4 «
-
week

Smulation Results

FRELW | DETALED TVSTEY [ACCEAT | Sverem
DESGH [TESIGN | IMPLEMENTATION |1;s~rws| AHCE | DELIVERY
TESTING =1

ACTUAL DATA

T IS WUOE Y WEEN S ME e TAEE

Areal project

16

Conclusions

Simulation results demonstrate the capability of the
described model of

e reproducing empirically-known facts
 being adopted as tool to test process assumptions

The suggested approach allows high model flexibility
and reusability:

e easy extension to other process paradigms and easy
hierarchical modelling of activities’s details;

 adaptable to the maturity of the target environment,
and updatable to follow its evolution (CMM, QIP).

17

